主题 : 有人知道这是什么原因? 复制链接 | 浏览器收藏 | 打印
级别: 新手上路
UID: 105628
精华: 0
发帖: 32
金钱: 160 两
威望: 32 点
贡献值: 0 点
综合积分: 64 分
注册时间: 2014-06-30
最后登录: 2015-04-07
楼主  发表于: 2015-02-10 09:20

 有人知道这是什么原因?

WARNING: arch/arm/mach-s5pv210/built-in.o(.data+0x23ec): Section mismatch in reference from the variable

s5pv210_cpufreq_drv to the function .init.text:s5pv210_cpufreq_probe()
The variable s5pv210_cpufreq_drv references
the function __init s5pv210_cpufreq_probe()
If the reference is valid then annotate the
variable with __init* or __refdata (see linux/init.h) or name the variable:
*_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console
级别: 新手上路
UID: 105628
精华: 0
发帖: 32
金钱: 160 两
威望: 32 点
贡献值: 0 点
综合积分: 64 分
注册时间: 2014-06-30
最后登录: 2015-04-07
1楼  发表于: 2015-02-10 09:53

 回 楼主(子轩) 的帖子

/* linux/arch/arm/mach-s5pv210/cpufreq.c
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
*        http://www.samsung.com
*
* CPU frequency scaling for S5PC110/S5PV210
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/suspend.h>
#include <linux/reboot.h>
#include <linux/regulator/consumer.h>
#include <linux/cpufreq.h>
#include <linux/platform_device.h>

#include <mach/map.h>
#include <mach/regs-clock.h>
#include <mach/cpu-freq-v210.h>

static struct clk *cpu_clk;
static struct clk *dmc0_clk;
static struct clk *dmc1_clk;
static struct cpufreq_freqs freqs;
static DEFINE_MUTEX(set_freq_lock);

/* APLL M,P,S values for 1G/800Mhz */
#define APLL_VAL_1000    ((1 << 31) | (125 << 16) | (3 << 8) | 1)
#define APLL_VAL_800    ((1 << 31) | (100 << 16) | (3 << 8) | 1)

#define SLEEP_FREQ    (800 * 1000) /* Use 800MHz when entering sleep */

/*
* relation has an additional symantics other than the standard of cpufreq
*    DISALBE_FURTHER_CPUFREQ: disable further access to target until being re-enabled.
*    ENABLE_FURTUER_CPUFREQ: re-enable access to target
*/
enum cpufreq_access {
    DISABLE_FURTHER_CPUFREQ = 0x10,
    ENABLE_FURTHER_CPUFREQ = 0x20,
};
static bool no_cpufreq_access;


/*
* DRAM configurations to calculate refresh counter for changing
* frequency of memory.
*/
struct dram_conf {
    unsigned long freq;    /* HZ */
    unsigned long refresh;    /* DRAM refresh counter * 1000 */
};

/* DRAM configuration (DMC0 and DMC1) */
static struct dram_conf s5pv210_dram_conf[2];

enum perf_level {
    L0, L1, L2, L3, L4,
};

enum s5pv210_mem_type {
    LPDDR    = 0x1,
    LPDDR2    = 0x2,
    DDR2    = 0x4,
};

enum s5pv210_dmc_port {
    DMC0 = 0,
    DMC1,
};

static struct cpufreq_frequency_table s5pv210_freq_table[] = {
    {L0, 1000*1000},
    {L1, 800*1000},
    {L2, 400*1000},
    {L3, 200*1000},
    {L4, 100*1000},
    {0, CPUFREQ_TABLE_END},
};

static struct regulator *arm_regulator;
static struct regulator *internal_regulator;

struct s5pv210_dvs_conf {
    unsigned long    arm_volt; /* uV */
    unsigned long    int_volt; /* uV */
};

const unsigned long arm_volt_max = 1350000;
const unsigned long int_volt_max = 1250000;

static struct s5pv210_dvs_conf dvs_conf[] = {
    [L0] = {
        .arm_volt   = 1250000,
        .int_volt   = 1100000,
    },
    [L1] = {
        .arm_volt   = 1200000,
        .int_volt   = 1100000,
    },
    [L2] = {
        .arm_volt   = 1050000,
        .int_volt   = 1100000,
    },
    [L3] = {
        .arm_volt   = 1000000,
        .int_volt   = 1100000,
    },
    [L4] = {
        .arm_volt   = 950000,
        .int_volt   = 1000000,
    },
};

static u32 clkdiv_val[5][11] = {
    /*
     * Clock divider value for following
     * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
     *   HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
     *   ONEDRAM, MFC, G3D }
     */

    /* L0 : [1000/200/100][166/83][133/66][200/200] */
    {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},

    /* L1 : [800/200/100][166/83][133/66][200/200] */
    {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},

    /* L2 : [400/200/100][166/83][133/66][200/200] */
    {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},

    /* L3 : [200/200/100][166/83][133/66][200/200] */
    {3, 3, 0, 1, 3, 1, 4, 1, 3, 0, 0},

    /* L4 : [100/100/100][83/83][66/66][100/100] */
    {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
};

/*
* This function set DRAM refresh counter
* accoriding to operating frequency of DRAM
* ch: DMC port number 0 or 1
* freq: Operating frequency of DRAM(KHz)
*/
static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
{
    unsigned long tmp, tmp1;
    void __iomem *reg = NULL;

    if (ch == DMC0) {
        reg = (S5P_VA_DMC0 + 0x30);
    } else if (ch == DMC1) {
        reg = (S5P_VA_DMC1 + 0x30);
    } else {
        printk(KERN_ERR "Cannot find DMC port\n");
        return;
    }

    /* Find current DRAM frequency */
    tmp = s5pv210_dram_conf[ch].freq;

    do_div(tmp, freq);

    tmp1 = s5pv210_dram_conf[ch].refresh;

    do_div(tmp1, tmp);

    __raw_writel(tmp1, reg);
}

int s5pv210_verify_speed(struct cpufreq_policy *policy)
{
    if (policy->cpu)
        return -EINVAL;

    return cpufreq_frequency_table_verify(policy, s5pv210_freq_table);
}

unsigned int s5pv210_getspeed(unsigned int cpu)
{
    if (cpu)
        return 0;

    return clk_get_rate(cpu_clk) / 1000;
}

static int s5pv210_target(struct cpufreq_policy *policy,
              unsigned int target_freq,
              unsigned int relation)
{
    unsigned long reg;
    unsigned int index, priv_index;
    unsigned int pll_changing = 0;
    unsigned int bus_speed_changing = 0;
    unsigned int arm_volt, int_volt;
    int ret = 0;

    mutex_lock(&set_freq_lock);

    if (relation & ENABLE_FURTHER_CPUFREQ)
        no_cpufreq_access = false;
    if (no_cpufreq_access) {
#ifdef CONFIG_PM_VERBOSE
        pr_err("%s:%d denied access to %s as it is disabled"
                "temporarily\n", __FILE__, __LINE__, __func__);
#endif
        ret = -EINVAL;
        goto out;
    }
    if (relation & DISABLE_FURTHER_CPUFREQ)
        no_cpufreq_access = true;
    relation &= ~(ENABLE_FURTHER_CPUFREQ | DISABLE_FURTHER_CPUFREQ);

    freqs.old = s5pv210_getspeed(0);

    if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
                       target_freq, relation, &index)) {
        ret = -EINVAL;
        goto out;
    }

    freqs.new = s5pv210_freq_table[index].frequency;
    freqs.cpu = 0;

    if (freqs.new == freqs.old)
        goto out;

    /* Finding current running level index */
    if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
                       freqs.old, relation, &priv_index)) {
        ret = -EINVAL;
        goto out;
    }

    arm_volt = dvs_conf[index].arm_volt;
    int_volt = dvs_conf[index].int_volt;

    if (freqs.new > freqs.old) {
        /* Voltage up code: increase ARM first */
        if (!IS_ERR_OR_NULL(arm_regulator) &&
                !IS_ERR_OR_NULL(internal_regulator)) {
            ret = regulator_set_voltage(arm_regulator,
                            arm_volt, arm_volt_max);
            if (ret)
                goto out;
            ret = regulator_set_voltage(internal_regulator,
                            int_volt, int_volt_max);
            if (ret)
                goto out;
        }
    }

    cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);

    /* Check if there need to change PLL */
    if ((index == L0) || (priv_index == L0))
        pll_changing = 1;

    /* Check if there need to change System bus clock */
    if ((index == L4) || (priv_index == L4))
        bus_speed_changing = 1;

    if (bus_speed_changing) {
        /*
         * Reconfigure DRAM refresh counter value for minimum
         * temporary clock while changing divider.
         * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
         */
        if (pll_changing)
            s5pv210_set_refresh(DMC1, 83000);
        else
            s5pv210_set_refresh(DMC1, 100000);

        s5pv210_set_refresh(DMC0, 83000);
    }

    /*
     * APLL should be changed in this level
     * APLL -> MPLL(for stable transition) -> APLL
     * Some clock source's clock API are not prepared.
     * Do not use clock API in below code.
     */
    if (pll_changing) {
        /*
         * 1. Temporary Change divider for MFC and G3D
         * SCLKA2M(200/1=200)->(200/4=50)Mhz
         */
        reg = __raw_readl(S5P_CLK_DIV2);
        reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
        reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
            (3 << S5P_CLKDIV2_MFC_SHIFT);
        __raw_writel(reg, S5P_CLK_DIV2);

        /* For MFC, G3D dividing */
        do {
            reg = __raw_readl(S5P_CLKDIV_STAT0);
        } while (reg & ((1 << 16) | (1 << 17)));

        /*
         * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
         * (200/4=50)->(667/4=166)Mhz
         */
        reg = __raw_readl(S5P_CLK_SRC2);
        reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
        reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
            (1 << S5P_CLKSRC2_MFC_SHIFT);
        __raw_writel(reg, S5P_CLK_SRC2);

        do {
            reg = __raw_readl(S5P_CLKMUX_STAT1);
        } while (reg & ((1 << 7) | (1 << 3)));

        /*
         * 3. DMC1 refresh count for 133Mhz if (index == L4) is
         * true refresh counter is already programed in upper
         * code. 0x287@83Mhz
         */
        if (!bus_speed_changing)
            s5pv210_set_refresh(DMC1, 133000);

        /* 4. SCLKAPLL -> SCLKMPLL */
        reg = __raw_readl(S5P_CLK_SRC0);
        reg &= ~(S5P_CLKSRC0_MUX200_MASK);
        reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
        __raw_writel(reg, S5P_CLK_SRC0);

        do {
            reg = __raw_readl(S5P_CLKMUX_STAT0);
        } while (reg & (0x1 << 18));

    }

    /* Change divider */
    reg = __raw_readl(S5P_CLK_DIV0);

    reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
        S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
        S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
        S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);

    reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
        (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
        (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
        (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
        (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
        (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
        (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
        (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));

    __raw_writel(reg, S5P_CLK_DIV0);

    do {
        reg = __raw_readl(S5P_CLKDIV_STAT0);
    } while (reg & 0xff);

    /* ARM MCS value changed */
    reg = __raw_readl(S5P_ARM_MCS_CON);
    reg &= ~0x3;
    if (index >= L3)
        reg |= 0x3;
    else
        reg |= 0x1;

    __raw_writel(reg, S5P_ARM_MCS_CON);

    if (pll_changing) {
        /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
        __raw_writel(0x2cf, S5P_APLL_LOCK);

        /*
         * 6. Turn on APLL
         * 6-1. Set PMS values
         * 6-2. Wait untile the PLL is locked
         */
        if (index == L0)
            __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
        else
            __raw_writel(APLL_VAL_800, S5P_APLL_CON);

        do {
            reg = __raw_readl(S5P_APLL_CON);
        } while (!(reg & (0x1 << 29)));

        /*
         * 7. Change souce clock from SCLKMPLL(667Mhz)
         * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
         * (667/4=166)->(200/4=50)Mhz
         */
        reg = __raw_readl(S5P_CLK_SRC2);
        reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
        reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
            (0 << S5P_CLKSRC2_MFC_SHIFT);
        __raw_writel(reg, S5P_CLK_SRC2);

        do {
            reg = __raw_readl(S5P_CLKMUX_STAT1);
        } while (reg & ((1 << 7) | (1 << 3)));

        /*
         * 8. Change divider for MFC and G3D
         * (200/4=50)->(200/1=200)Mhz
         */
        reg = __raw_readl(S5P_CLK_DIV2);
        reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
        reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
            (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
        __raw_writel(reg, S5P_CLK_DIV2);

        /* For MFC, G3D dividing */
        do {
            reg = __raw_readl(S5P_CLKDIV_STAT0);
        } while (reg & ((1 << 16) | (1 << 17)));

        /* 9. Change MPLL to APLL in MSYS_MUX */
        reg = __raw_readl(S5P_CLK_SRC0);
        reg &= ~(S5P_CLKSRC0_MUX200_MASK);
        reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
        __raw_writel(reg, S5P_CLK_SRC0);

        do {
            reg = __raw_readl(S5P_CLKMUX_STAT0);
        } while (reg & (0x1 << 18));

        /*
         * 10. DMC1 refresh counter
         * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
         * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
         */
        if (!bus_speed_changing)
            s5pv210_set_refresh(DMC1, 200000);
    }

    /*
     * L4 level need to change memory bus speed, hence onedram clock divier
     * and memory refresh parameter should be changed
     */
    if (bus_speed_changing) {
        reg = __raw_readl(S5P_CLK_DIV6);
        reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
        reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
        __raw_writel(reg, S5P_CLK_DIV6);

        do {
            reg = __raw_readl(S5P_CLKDIV_STAT1);
        } while (reg & (1 << 15));

        /* Reconfigure DRAM refresh counter value */
        if (index != L4) {
            /*
             * DMC0 : 166Mhz
             * DMC1 : 200Mhz
             */
            s5pv210_set_refresh(DMC0, 166000);
            s5pv210_set_refresh(DMC1, 200000);
        } else {
            /*
             * DMC0 : 83Mhz
             * DMC1 : 100Mhz
             */
            s5pv210_set_refresh(DMC0, 83000);
            s5pv210_set_refresh(DMC1, 100000);
        }
    }

    cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);

    if (freqs.new < freqs.old) {
        /* Voltage down: decrease INT first */
        if (!IS_ERR_OR_NULL(arm_regulator) &&
                !IS_ERR_OR_NULL(internal_regulator)) {
            regulator_set_voltage(internal_regulator,
                    int_volt, int_volt_max);
            regulator_set_voltage(arm_regulator,
                    arm_volt, arm_volt_max);
        }
    }

    printk(KERN_DEBUG "Perf changed[L%d]\n", index);
out:
    mutex_unlock(&set_freq_lock);
    return ret;
}

#ifdef CONFIG_PM
static int s5pv210_cpufreq_suspend(struct cpufreq_policy *policy)
{
    return 0;
}

static int s5pv210_cpufreq_resume(struct cpufreq_policy *policy)
{
    return 0;
}
#endif

static int check_mem_type(void __iomem *dmc_reg)
{
    unsigned long val;

    val = __raw_readl(dmc_reg + 0x4);
    val = (val & (0xf << 8));

    return val >> 8;
}

static int __init s5pv210_cpu_init(struct cpufreq_policy *policy)
{
    unsigned long mem_type;

    cpu_clk = clk_get(NULL, "armclk");
    if (IS_ERR(cpu_clk))
        return PTR_ERR(cpu_clk);

    dmc0_clk = clk_get(NULL, "sclk_dmc0");
    if (IS_ERR(dmc0_clk)) {
        clk_put(cpu_clk);
        return PTR_ERR(dmc0_clk);
    }

    dmc1_clk = clk_get(NULL, "hclk_msys");
    if (IS_ERR(dmc1_clk)) {
        clk_put(dmc0_clk);
        clk_put(cpu_clk);
        return PTR_ERR(dmc1_clk);
    }

    if (policy->cpu != 0)
        return -EINVAL;

    /*
     * check_mem_type : This driver only support LPDDR & LPDDR2.
     * other memory type is not supported.
     */
    mem_type = check_mem_type(S5P_VA_DMC0);

    if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
        printk(KERN_ERR "CPUFreq doesn't support this memory type\n");
        return -EINVAL;
    }

    /* Find current refresh counter and frequency each DMC */
    s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000);
    s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);

    s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000);
    s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);

    policy->cur = policy->min = policy->max = s5pv210_getspeed(0);

    cpufreq_frequency_table_get_attr(s5pv210_freq_table, policy->cpu);

    policy->cpuinfo.transition_latency = 40000;

    return cpufreq_frequency_table_cpuinfo(policy, s5pv210_freq_table);
}

static int s5pv210_cpufreq_notifier_event(struct notifier_block *this,
        unsigned long event, void *ptr)
{
    int ret;

    switch (event) {
    case PM_SUSPEND_PREPARE:
        ret = cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ,
                DISABLE_FURTHER_CPUFREQ);
        if (ret < 0)
            return NOTIFY_BAD;
        return NOTIFY_OK;
    case PM_POST_RESTORE:
    case PM_POST_SUSPEND:
        cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ,
                ENABLE_FURTHER_CPUFREQ);
        return NOTIFY_OK;
    }
    return NOTIFY_DONE;
}

static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this,
        unsigned long event, void *ptr)
{
    int ret = 0;

    ret = cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ,
            DISABLE_FURTHER_CPUFREQ);
    if (ret < 0)
        return NOTIFY_BAD;

    return NOTIFY_DONE;
}

static struct cpufreq_driver s5pv210_driver = {
    .flags        = CPUFREQ_STICKY,
    .verify        = s5pv210_verify_speed,
    .target        = s5pv210_target,
    .get        = s5pv210_getspeed,
    .init        = s5pv210_cpu_init,
    .name        = "s5pv210",
#ifdef CONFIG_PM
    .suspend    = s5pv210_cpufreq_suspend,
    .resume        = s5pv210_cpufreq_resume,
#endif
};

static struct notifier_block s5pv210_cpufreq_notifier = {
    .notifier_call = s5pv210_cpufreq_notifier_event,
};

static struct notifier_block s5pv210_cpufreq_reboot_notifier = {
    .notifier_call    = s5pv210_cpufreq_reboot_notifier_event,
};

static int __init s5pv210_cpufreq_probe(struct platform_device *pdev)
{
    struct s5pv210_cpufreq_data *pdata = dev_get_platdata(&pdev->dev);
    int i, j;

    if (pdata && pdata->size) {
        for (i = 0; i < pdata->size; i++) {
            j = 0;
            while (s5pv210_freq_table[j].frequency != CPUFREQ_TABLE_END) {
                if (s5pv210_freq_table[j].frequency == pdata->volt.freq) {
                    dvs_conf[j].arm_volt = pdata->volt.varm;
                    dvs_conf[j].int_volt = pdata->volt.vint;
                    break;
                }
                j++;
            }
        }
    }

    arm_regulator = regulator_get(NULL, "vddarm");
    if (IS_ERR(arm_regulator)) {
        pr_err("failed to get regulater resource vddarm\n");
        goto error;
    }
    internal_regulator = regulator_get(NULL, "vddint");
    if (IS_ERR(internal_regulator)) {
        pr_err("failed to get regulater resource vddint\n");
        goto error;
    }
    goto finish;
error:
    pr_warn("Cannot get vddarm or vddint. CPUFREQ Will not"
               " change the voltage.\n");
finish:
    register_pm_notifier(&s5pv210_cpufreq_notifier);
    register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier);

    return cpufreq_register_driver(&s5pv210_driver);
}

static struct platform_driver s5pv210_cpufreq_drv = {
    .probe        = s5pv210_cpufreq_probe,
    .driver        = {
        .owner    = THIS_MODULE,
        .name    = "s5pv210-cpufreq",
    },
};

static int __init s5pv210_cpufreq_init(void)
{
    int ret;
    ret = platform_driver_register(&s5pv210_cpufreq_drv);
    if (!ret)
        pr_info("%s: S5PV210 cpu-freq driver\n", __func__);

    return ret;
}

late_initcall(s5pv210_cpufreq_init);